Software Cost Modelling and Estimation Using Artificial Neural Networks Enhanced by Input Sensitivity Analysis
نویسندگان
چکیده
This paper addresses the issue of Software Cost Estimation (SCE) providing an alternative approach to modelling and prediction using Artificial Neural Networks (ANN) and Input Sensitivity Analysis (ISA). The overall aim is to identify and investigate the effect of the leading factors in SCE, through ISA. The factors identified decisively influence software effort in the models examined and their ability to provide sufficiently accurate SCEs is examined. ANN of variable topologies are trained to predict effort devoted to software development based on past (finished) projects recorded in two publicly available historical datasets. The main difference with relevant studies is that the proposed approach extracts the most influential cost drivers that describe best the effort devoted to development activities using the weights of the network connections. The approach is validated on known software cost data and the results obtained are assessed and compared. The ANN constructed generalise efficiently the knowledge acquired during training providing accurate effort predictions. The validation process included predictions with only the most highly ranked attributes among the original cost attributes of the datasets and revealed that accuracy performance was maintained at same levels. The results showed that the combination of ANN and ISA is an effective method for evaluating the contribution of cost factors, whereas the subsets of factors selected did not compromise the accuracy of the prediction results.
منابع مشابه
Estimation of coal swelling index based on chemical properties of coal using artificial neural networks
Free swelling index (FSI) is an important parameter for cokeability and combustion of coals. In this research, the effects of chemical properties of coals on the coal free swelling index were studied by artificial neural network methods. The artificial neural networks (ANNs) method was used for 200 datasets to estimate the free swelling index value. In this investigation, ten input parameters ...
متن کاملForecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm
Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...
متن کاملEstimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks
Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملRainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. UCS
دوره 18 شماره
صفحات -
تاریخ انتشار 2012